SF 298 MASTER COPY * KEEP THIS COPY FOR REPRODUCTION PURPOSES

REPORT DOCUMENTATION PAGE Form Approved

OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspact of this
collection of information, including sug%estions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REP%{\]’ TYPE AND DATES COVERED
April 20, 1997 mel 20 .57 23-26 Jar9b
4. TITLEANDSUBTITLE  Robust Wiener-Hopf Design for 5. FUNDING NUMBERS V'

Multivariable Control Systems and Applications to
Vibration Suppression on a Weapon Pointing System

6. AUTHOR(S) DAAHOYH-T3-2-0009

Drs. F. Khorrami and J. J. Bongiorno, Jr.

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Polytechnic University
Six Metrotech Center
Brooklyn, NY 11201

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
: AGENCY REPORT NUMBER
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211 Ako 32450 - Q-MAIS 70

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. 1 99 7 0 5 1 5 1 74

13. ABSTRACT (Maximum 200 words)

Trade-offs between stability margin and performance are considered in two and three-degree-
of-freedom multivariable control systems using a Wiener-Hopf design approach. Maximum
improvement in an approximate measure of stability margin is achieved at the expense of a
prescribed increase in the quadratic cost functional measuring system performance. In order to
attain an analytical solution to this fundamental trade-off problem, the approximate measure of
stability margin chosen is also a quadratic cost function. A novel approach is introduced which
allows structured perturbations in the coprime polynomial matrix fraction description of the
plant transfer matrix to be taken into account. As a consequence, it is believed that the use of
an approximate measure of stability margin is mitigated. Moreover, if needed, the solution ob-
tained could serve as a very good initial one from which to search for better solutions iteratively.
The aforementioned control design methodology was implemented on the available testbeds for
advanced weapon pointing systems at the Picatinny Army Arsenal in New Jersey.

~ A~

n ey T T Y &
1750 QUALAL X Muu:‘uu&_:) D

14. SUBJECT TERMS 15. NUMBER IF PAGES
Wiener-Hopf Design, Stability Margin, Performance, 49
Multivariable Linear Systems. 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OR REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102




*

Final Report
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Summary of the Effort

Trade-offs between stability margin and performance are considered in two and
three-degree-of-freedom multivariable control systems using a Wiener-Hopf design
approach. Maximum improvement in an approximate measure of stability margin
is achieved at the expense of a prescribed increase in the quadratic cost functional
measuring system performance. In order to attain an analytical solution to this
fundamental trade-off problem, the approximate measure of stability margin chosen is
also a quadratic cost function. A novel approach is introduced which allows structured
perturbations in the coprime polynomial matrix fraction description of the plant
transfer matrix to be taken into account. As a consequence, it is believed that the
use of an approximate measure of stability margin is mitigated. Moreover, if needed,
the solution obtained could serve as a very good initial one from which to search
for better solutions iteratively. The aforementioned control design methodology was
implemented on the available testbeds for advanced weapon pointing systems at the
Picatinny Army Arsenal in New Jersey.
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ear Systems.



9

Contents

Introduction

Summary of Available Results

Stability Margin Considerations and Problem Formulation
The Analytical Solution

The 2DOF System

Computational Issues

A Numerical Example

Conclusion

References

10 Publications and Technical Reports for this Grant

11 Personnel and Students Supported by this Grant

13

20

26

30

32

36

42

47

48



1. Introduction

The feedback control system considered is shown in Fig. 1.1. This system is
referred to as a 3DOF feedback system because of the three real rational transfer
matrices Cy(s), Cw(s), and C,(s) which can be chosen in the design of the controller.
When no feedforward transducer is available, C,(s) = 0 and the feedback system
reduces to a 2DOF system. Optimal and suboptimal designs for the system shown in
Fig. 1.1 are treated in [1] and form the basis for the work presented here. In fact, the
notation used here is consistent with that used in [1] for easy reference. The transfer
matrices given in the blocks of Fig. 1.1 are real and rational. The matrices F;(s) and
To(s) are n X n, P(s) is nxm, Ly(s) is I x r, and Py(s) is n x r. The dimensions of
all other vectors and matrices are taken to be compatible with these.

1) d(®)
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+ Livear Controfler | ) | + |
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| Feedback Transducer ¢
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Figure 1.1: The 3DOF system.

The Wiener-Hopf design philosophy for two and three-degree-of-freedom (2DOF
and 3DOF) multivariable control systems is described in [1-3]. In these works, a
quadratic cost functional is postulated to measure system performance. The cost
functional takes into account such issues as tracking error, saturation, and sensitivity
to small parameter variations. The main contribution of this earlier work is the
identification of the subset of all stabilizing controllers for which the cost functional
is finite. This subset is parameterized for two-degree-of-freedom (2DOF) systems in
terms of two real rational matrix parameters each of which is strictly proper and
analytic in the closed right hand side of the complex plane. An identical result holds



for three-degree-of-freedom (3DOF) systems except that the parameterization is in
terms of three rather than two such matrices. Since the 2DOF system can be treated
as a special case of the 3DOF system [1], the ideas here are first presented and
developed for the 3DOF case. The results for the 2DOF case are then easily derived.

The cost functionals are minimized in both the 2DOF and 3DOF cases when the
matrix parameters are chosen to be null matrices. When non-null choices are made for
any of the matrix parameters, an increase in the cost functional results which is related
to the matrix parameters through simple formulas. Similar results are available in [4],
[5] for the so-called generalized plant configuration. In this configuration, all system
components other than the controller are represented by the generalized plant. This
point of view is especially appealing to those who wish to concentrate on solving
the mathematical problems associated with controller design. Their results are then
applicable to all possible feedback system configurations. On the other hand, it is
also useful for engineers to have design formulas available for a specific configuration
whose structure has wide application. Such a structure is the one employed in the
3DOF system. Indeed, it is hard to imagine any control system applications which are
not included in the 3DOF case, although a 4DOF system involving the generation
of a signal to be used for diagnostic purposes is described in [6]. For the 3DOF
structure, the relationship of the matrix design parameters to important engineering
issues can be exploited. In particular, those matrix parameters which are connected
to system robustness can be used to trade-off optimal nominal system performance
against improved robustness with respect to plant uncertainty. A straightforward
methodology for achieving this trade-off is described in this paper.

The direct nature of the methodology employed here together with the careful
attention paid to the increase in the value of the original quadratic cost functional
contrasts with the design point of view employed in the loop transfer recovery (LTR)
methodology [7-14]. Specifically, the cost functional is viewed here as a truly in-
dicative measure of nominal system performance and not one whose weights can be
manipulated to achieve desired engineering goals. Instead, the matrix parameters are
viewed as the objects to be manipulated and the cost increments associated with any
such manipulation is kept to the forefront. In addition, a one-step process instead
of a two-step process is used to find the unique choice for the matrix parameters.
This unique choice is the solution of a constrained optimization problem. That is,
one in which a quadratic or H, measure of the stability margin is optimized for a
prescribed increment in the cost functional. Moreover, no special considerations are
needed when the plant transfer matrix is nonminimum phase and/or sensor noise as
well as disturbance inputs are present. Also the design procedure begins with coprime
polynomial matrix fraction descriptions for the plant and sensors and can be carried
out without state variable models for these system components.

Justification for the point of view adopted here is based on the following obser-



vations. Foremost in the design of advanced control systems is the need to satisfy
performance specifications. In fact, one often sacrifices stability margin or accepts
conditionally stable systems in order to realize superior performance. So one should
begin with an optimal H, solution. When this solution exceeds specifications, the cost
functional can be increased and the increment traded for an improvement in stability
margin. That is, one should maximize stability margin subject to a constraint on
the H, norm cost increment. When the stability margin obtained in this way is not
adequate, then one must use a different controller for different operating profiles of
the plant: typically, one should not give up performance just for the sake of operating
with a single fixed controller when high performance is required.

In a recent paper [15], stability margin is addressed in a quadratic cost setting
by including an additional term that accounts for stability margin in the minimized
cost functional. This approach, however, was not fully explored in [15] and does not
provide the perspective gained here. Here, instead, suboptimal performance is linked
to stability margin through some non-null choices of the matrix parameters. In this
way, the trade-off being made becomes transparent and important design formulas
are obtained.

The use of a quadratic cost functional as an indicator of control system perfor-
mance for systems subjected to both stochastic and shape-deterministic inputs has
been a long accepted practice in the control field and needs no justification here
[16,17]. Stability margin, on the other hand, is more correctly measured by an H,
norm [18]. So the real problem involves the application of an H, norm on an in-
dicator of system performance and the application of an H,, norm on an indicator
of stability margin, with the indicators in each case being different functions of the
same matrix parameter. That is, the real problem to be solved is a mixed Hy/H,
problem [19-29]. The approaches in the literature for the resolution of this type of
problem have typically focused on minimizing, subject to an H,, norm constraint, a
H,; norm. Except for [25], analytical solutions are not available. In [25], however,
the generalized plant configuration is considered with state feedback. This case is
impractical since not only is the state of the original physical plant required, but also
the states of all the sensors. Moreover, it is argued below that when the H,, norm is
used to measure stability margin, it is the reverse problem that is more appropriate.
That is, one should instead minimize the H,, norm subject to a constraint on the H,
norm. So it is believed that the preliminary efforts in [30] to trade-off excess stability
margin in the form identified in [18] in order to minimize a quadratic performance
measure is not headed in the right direction.

Unfortunately, minimizing the H, norm subject to a constraint on the H; norm is
also a difficult problem for which analytical solutions are not expected. In this paper,
the difficulties are circumvented by choosing a meaningful, although nonrigorous,
quadratic measure rather than an H,., measure of stability margin. This is in keeping



with the use of a quadratic measure for saturation which is also approximate. In
addition, in contrast with [18] where coprime rational matrix fraction descriptions
for the plant are used, here polynomial matrix fractions are used and uncertainty
is modelled as perturbations in the coefficient matrices of these coprime polynomial
matrices. It is believed that this is a more natural way to model structural uncertainty
in practice.

By working with an H; norm for both measures of performance and stability
margin, a key result in [31] can be employed and one obtains a frequency-domain
analytical solution for the design problem to within the choice of a single scalar La-
grangian multiplier. It is anticipated that this approach will often lead to satisfactory
designs or at least good initial designs from which refinements can be explored. In-
deed, it is possible to view the design problem treated here as a trade-off among Pareto
optimal solutions for a multicriterion optimization problem [32]. Certainly, the ro-
bustness analysis tools described in [33] would also play a major role in the evaluation
and modification of the control systems synthesized using the methodology presented
here.

There is a danger in using an H, norm instead of an H,, norm for stability
margin. In [34], for a class of scalar systems, it is established that the Hy, norm as an
indicator of system performance can be substantially larger than its minimum value
when the free matrix parameter is chosen to be the one which minimizes the Hy norm
of this same indicator. Since the minimum H,, norm solutions are typically overly
conservative [35,36] when uncertainties are structured, and since the properties of the
function whose H, norm was investigated in [34] differ somewhat from the properties
of the function used here as an indicator of stability margin, it is expected that the
potential danger of working with an H, norm is mitigated.

The H; norm trade-off problem of interest here can also be approached numer-
ically using convex programming along the lines taken in [29,32,37,38] or indirectly
through linear matrix inequalities (LMI) as described in [39,40]. The former involves
approximating the infinite-dimensional set for the real, rational, strictly-proper ma-
trix design parameter with a sequence of larger and larger finite-dimensional subsets.
The latter uses convex programming to solve the LMI associated with an optimal fixed
order controller. So to approximate the infinite-dimensional problem, a sequence of
controllers of increasing order would have to be studied. Clearly, the analytical result
given in the sequel serves as an important complement to these numerical optimiza-
tion approaches. This analytical result also provides a guide for choosing a good
starting point when these numerical approaches are used to search for the solution to
the underlying mixed Hy/H,, problem, should this step be necessary.

All results in this paper are developed by working exclusively in the complex s-
plane and all matrix functions of s = o + jw are assumed to be real and rational. The



real part of s is denoted by Re s. For any matrix G(s), the notations G, G, G*, det G,
and TrG are used for the transpose, conjugate, conjugate transpose, determinant, and
trace of G(s), respectively. The matrix G.(s) is the conjugate transpose of G(—3) or
G.(s) = G*(—3) which, for real rational matrices, reduces to G.(s) = G'(—s). A real
matrix G(s) is called para-Hermitian when G = G,. A diagonal matrix G with g;
in the i-row, i-column, i=1 — n, is denoted by G=diag{g1, g2.-.,9n}. The Kronecker
product of two matrices is denoted as G®QR and is the matrix whose ij-block is given
by g:;R. The vector g=vec G=l[g, g5 ...g,) is formed by stacking all the columns of
the matrix G=[g1gs ...g»]. As is evident from the above, function arguments are often
omitted for brevity when no confusion is possible. The notation G(s) < O(s”) means
that no entry in G(s) grows faster than s” as s — co. In the partial fraction expansion
of G(s), the contributions made by all its finite poles in Re s < 0, Re s>0, and by
its poles at s = co are denoted by {G}+, {G}-, and {G}, respectively. Clearly,
{G} is analytic in Re s>0, {G}- in Re s < 0 and both are < O(s™!). The identity
matrix is denoted by I. A positive definite (positive semidefinite) matrix G is denoted
by G > 0 (G > 0). A matrix G is said to be good when it is analytic on J, the
finite part of the s = jw-axis. The normal rank of a matrix G(s), denoted 7(G), is
the highest order of all non-identically-zero minors of G(s). When needed for clarity
vertical and/or horizontal lines are used to identify the partitions of a matrix. The
expectation operator is denoted by £{}.

2. Summary of Available Results

The Wiener-Hopf design of optimal 3DOF systems and the parameterization of
all suboptimal designs which is presented in [1] is summarized in this section. In this
regard, it is convenient to introduce the three closed-loop transfer matrices

R, = (I+ C,F.P)'C,, (2.1)

R, = (I+ Cy,FP)'Cy, (2.2)
and

R, =(I1+C,F.P)7'C,. (2.3)

Also essential in this work are several coprime polynomial matrix fraction descrip-
tions. Specifically, one can always write [41]

FiP = BiA{' = A7'B, (2.4)



where B;, A; is a right and A, B is a left coprime pair of polynomial matrices for
which there exist real polynomial matrices X, Y, Xi, and ¥; so that

AYT = YA, (2.5a)
AX+BY = 1, (2.5b)
X1A1 + }/1B1 = I, (25C)
and
detXdetX; # 0. (2.5d)

It is a consequence of Theorem 1 in [1] that any C,, associated with a stabilizing
controller is of the form

Cu = (X1 — K1B)™\(Y; + K, A) (2.6)

where K; is a real rational matrix analytic in Re s>0. It then easily follows from
(2.2) that

R, = A;(Y1 + K1 A) (2.7)
and
I - R,F,P=(I+C,F,P)" = Ai(X, — K\B). (2.8)

The cost functional E which takes tracking error, saturation, and sensitivity into
account was introduced in [1,2] and is as follows:

E = /j°° Tr(Gu(s)ds + —— [* Tr(Q(s)Gi(s))ds

ﬂj —joo 217 J-joo
# JOO ~ ~ /,I/ ]OO
/ Tr(3G,(s)3.)ds + == / Tr(kQRuF.G FuRo)ds  (2.9)

57?]' —joo 277 J-joo

where G., G,, and G, are the spectral densities of the error e(s) = To(s)u(s) — y(s),
the input r(s), and the plant uncertainty (see equation (2.18)), respectively. The
constants k£ and p are nonnegative and ((s) is a para-Hermitian nonnegative definite
weighting matrix. The matrix S(s) = I — PR, F} is a closed-loop sensitivity matrix.

The expression for F in (2.9) decomposes into




E=FE,+FE,, (2.10)

in which
1
B o= 5 / [T {kFQRuGuRus + (PP + kQ)RuGr Rus}
+ Tr{(Ty— PR,)Gu(To — PR,).}] ds (2.11)

includes all terms involving R, and

1 pico
e = —— / " TrkQ(RuF.Py + RyL.)Ga( RuF,Po + R.Ly).
27y J-joo
+  (P.P 4 kQ)(RuGmRus + RGiRo) + kQRy FiptGo FouRy] ds
+ %/’ Tr[(Py — PRyF,Py — PR,L;)Ga(Po — PR,F.Py — PR,Ly).
T —J00
+ (I - PRyF)uGs(I — PR,F,).] ds (2.12)

all those involving R, and R,. In (2.11) and (2.12), G4, Gi, Gm, G, and G, are
specified spectral densities for the signals d(s), {(s), m(s), u(s), and n(s) respectively,
which also account for modelling of any shape-deterministic components in the signals
[4].

Clearly, E, is a nonnegative functional of R, and E,, is a nonnegative functional
of R, and R,. So the minimization of F is equivalent to two separate minimization
problems: the minimization of E, with respect to R, and the minimization of E,,
with respect to the pair Ry, R,. Also of interest is the parameterization of the set of
all R,, R,, and R, associated with an asymptotically stable 3DOF system possessing

a finite F, and a finite E,,. In this regard, the two definitions which follow are
introduced.

Definition 1: The real rational matrices R,, R,, and R, are said to be acceptable
for the given F}, P if there exists a controller which realizes them as the designated
closed-system transfer matrices of an internally asymptotically stable configuration
of the generic type shown in Fig. 1.1.

Definition 2: The acceptable matrices R,, R, and R, are called admzessible if they

yield finite cost E. An admissible controller is one which realizes an admissible triple
R,, R,,and R,.

The admissible R, for which E, is minimized is designated by R.. Similarly, the
admissible pair R, R, for which E,, is minimized is designated by Rw, R,. Specific



formulas for R,, R., and R, are given in [1]. 'Ilh'e associated minimum values for E,
and E,, are accordingly indicated by E, and E,,,, respectively.

It is evident from (2.2) that C,, is determined from R, by the formula
Cw= (I~ R,F,P) 'R, (2.13)

So there is a one-to-one correspondence between C, and R,,. Clearly, only C,, impacts
on the stability margin of the feedback loop. Hence, no further consideration is
given here to E, and R,. Interested readers are referred to [42,43] where suboptimal
choices of R, are investigated in connection with the design of decoupled multivariable
systems.

Before one can describe in detail the results obtained in [1] that are needed here,
two Wiener-Hopf spectral factorizations have to be defined. In the first, the matrix
A is a Wiener-Hopf spectral solution (i.e., A and A™' are analytic in Re s>0) of the
equation

A(P.P + kQ)A; = AA. (2.14)

The second Wiener-Hopf spectral factorization involves the matrices

A= l no } (2.15)
and

S RN e 219
where the matrix Gy is given by

Gas = PoGaPox + G5 (2.17)
and

Gs = E{(6P)(6P).} + E{(6FPo)(6Po)«} (2.18)

is a probabilistic model for first-order perturbations § P and 6 Py in the plant transfer
matrices P and Py, respectively. The matrix (G5 appears in the terms included in
the cost functional £ which take into account the sensitivity of the tracking error e
and plant input r to plant parameter changes. In the second Wiener-Hopf spectral
factorization needed, the matrix 2 is a Wiener-Hopf spectral solution of the equation

10




ABA, = 0Q.. (2.19)

A set of seven underlying assumptions cited below are introduced in [1] for which
the following holds.

(1) The set of all acceptable R,, and R, that yield a finite E,,, is generated by the
formula

[Ru|R.] = [Ru|R.] + A1A7Y[Z,]Z, )07 A (2.20)

where Z,, and Z, can be any real rational matrices analytic in Re s>0 and satisfying
Zyw <0O(s7h), Z, < O(s7h).

(ii) The cost functional E,, is given by

Ey, = By, + AE,, (2.21)
where
1 pico
AE,, = — / Tr(Z Zove + 22 Do ds. (2.22)
27'("7 —joo

Clearly, the choice Z, = 0, Z, = 0 leads to optimum performance. When optimum
performance exceeds specifications, there exists a number N for which all allowed

Zz = [Zw|Z,] (2.23)
satisfying
1 fieo
- Llds < 24
ABu: = 5 /_ - Tr{ZuZunlds < N (2.24)

can be considered for design trade offs. Here, in particular, that allowed Z,,, satisfying
equation (2.24) is sought for which a stability margin measure is minimized. The
purpose of this paper is to describe a mechanism for achieving this goal.

The set of seven underlying assumptions mentioned above also insure the existence
of an admissible R, so that a finite F is guaranteed to exist. This assures that
the problem addressed here is a meaningful one. These seven assumptions include

11




conditions which also involve the specified spectral densities G, and G, for the signals
u(s) and n(s), respectively. For easy reference, these seven assumptions follow.

Assumption 1: All system blocks are free of hidden poles in Re s>0. The transfer
matrix L;(s) and any portion of Py(s) arising from a block outside the feedback loop
are analytic in Re s>0. For any finite pole sq of P or F; in Re s>0, the McMillan
degree of sy as a pole of F}P is equal to the sum of its McMillan degrees as a pole of
P and F;.

Assumption 2: The matrix Ty(s) is proper and the spectral density G,(s) vanishes
at least as fast as 1/s?, as s = o0, i.e., G,(s) < O(s7?).

Assumption 3: T, and F; are analytic and nonsingular on the finite part of the
s = jw axis. In addition, Tp is analytic in Re s>0 and (ToF; — I)P is analytic on the
finite part of the s = jw axis.

Assumption 4: AG,A., Q, G, and (G,+ G,)™! are good (i.e., analytic on the
finite part of the s = jw axis).

Assumption 5: A;.(P.P + kQ)A; is nonsingular on the finite part of the s = jw
axis.

Assumption 6: The matrix A®A, is analytic and nonsingular on the finite part of
the s = jw axis.

Assumption 7: The plant-uncertainty spectral density G,(s) and Po(s)Ga(s)Pox(s)
are both < O(s7?), and G,.(s) is analytic on the finite part of the s = jw axis. In
addition FyP < O(s™), ®71(s) < O(s7?1), and (PP + kQ)™! < O(s7*2), where
vo+uv1+rvy 20. ’

An additional assumption which plays an essential role in the sequel is now intro-
duced.

Assumption 8: v; + v, +12>0.

It is now possible to state an important lemma which is an immediate consequence

12



of Lemma 2 in [1].

Lemma 1: When Assumptions 7 and 8 hold, then Q714 < O(s™), A1A™ <
O(s™), and all admissible R,,, R, satisfy [R, | R.] < O(s~¢1+2*1) which implies
that R,, R, are proper.

It is also convenient here to introduce the following definition.

Definition 3: Any pair of transfer matrices F;, P that satisfy Assumption 1 are
called admissible.

3. Stability Margin Considerations and Problem Formulation

The transfer matrices shown in Fig. 1.1 are nominal transfer matrices. Except for
the plant, it is assumed that the nominal and actual transfer matrices of the system
components are the same. The plant, however, has an actual transfer matrix which
differs from the nominal one. In this paper, there are two differences between the
nominal plant transfer matrix and the actual plant transfer matrix that are of interest.
The difference 6P in (2.18) represents the small uncertainty of the plant when it is
operating normally near nominal conditions. The difference 6P is introduced in the
sequel to characterize large perturbations associated with abnormal operation that
could lead to instability. The overall objective here is to design the controller so that
with normal system performance a specification on the value of the cost functional
E,. is met, while providing the maximum tolerance against instability arising from
the perturbations §P. In this section, attention is focused on the question of stability
and the impact of 6P on this issue. In this regard, the right coprime polynomial
matrix fraction description

Fy(P + 8P) = (By + 6By)(Ay + 6A;)™! (3.1)

is introduced to define the polynomial perturbations §A; and 0 B;.

When Assumption 1 holds and the pair F3, (P+5}3) is admissible, it is not difficult

to show [1] that the system is internally asymptotically stable for perturbations 6 A;
and 6By if, and only if,

13




is free of zeros in Re s>0. Using (2.7) and (2.8), (3.2) may immediately be written as

¢s =det{I+ A" § R, | [ ggi ]} (3.3)

where
S=I-R,FP (3.4)

is a loop sensitivity matrix on account of (2.8).

Since all coprime polynomial matrix pairs associated with matrix fraction descrip-
tions of the same rational matrix differ from one another only by a unimodular matrix
multiplier [44,45], the results cited above are independent of the particular choice of
matrix fraction descriptions used (e.g., see the final paragraph in the Appendix of
[2]). However, it is essential here that A; satisfies the following assumption.

Assumption 9: The polynomial matrix A; is column reduced and A7! is strictly
proper.

Assumption 9 is not overly restrictive. In fact, given any coprime matrix fraction
description BA™!, one can find a unimodular matrix U so that

BiA, = (BiU)(AU)™ = BAT? (3.5)

where A; is column reduced [44,45]. So there is no loss in generality in assuming that
Ay is column reduced. It is also true in almost all cases of practical interest that A7*
is strictly proper when A; is column reduced. Indeed, one has the following lemma.

Lemma 2: When FiP = B;A]" is strictly proper, when the pair B;, A; is right
coprime with A; column reduced, and when there exists no constant vector @ # 0
for which F;Pa = 0, then A]! is strictly proper.

Proof: First, it is established that the column degrees of A; must all be positive.
When the contrary is true, there is at least one column of A; which has zero degree.
This column then contains only constants. These constants cannot all be zero because
det A; # 0. This constant nonzero vector is designated by a. When (B;); denotes
the j-column of B; and « is the j-column of Ay, it then follows that

(By); = F,Pa. (3.6)
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Since F;P is strictly proper,

§—00

But (B,); is polynomial and the only way (3.7) can be true is if (By); = 0. It then
follows from (3.6) that

FPa=0,a # 0 (3.8)

which contradicts the hypothesis. It is now a simple matter to prove A7' is strictly
proper. Since A; is column reduced, one can write

Ay = (ADrS+ L (3.9)
where (A1)h. is a nonsingular constant matrix,
S = diag{s’,s%, ..., s%m} (3.10)

with é.; being the column degree of the j-column of A,, and the column degrees of the
polynomial matrix L are less than the corresponding column degrees of A;. Clearly,

lim A7 = lim S7'[(A1)he + LS = lim S7 (A1), =0 (3.11)

§—00 8§00 §-+00

and so A7 is strictly proper. This completes the proof.

It should be noted that lemmas similar to Lemma 2 have appeared in the literature
(e.g., see Theorem G-10 in [44] and Lemma 6.3-11 in [45]), but the possibility of (3.8)
was overlooked. A simple example which exposes the difficulty is easily generated

from
0 1
[%}: 1 s |. (3.12)
! 1 2s

In this case, F}P = [ —‘;l %J is strictly proper; however, AT' is only proper even
though A; is column reduced. This example is ruled out as a counterexample in

Lemma 2 because it satisfies F;Pa =0 for a = [1 1]’
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It should be emphasized that Lemma 2 provides sufficient conditions for A7! to
be strictly proper. In fact, one frequently finds that A7’ is strictly proper when F,P
is only proper or even improper.

The modelling of the perturbations §A;, §B; is considered next. Since A; is
column reduced, one can always write

k
A1 = ZAliSia detAlk = det(Al)hc 75 0 (313)

=0

where the elements of the A;; are real numbers,

k =maz{bc1,6c2, -, bcm} (3.14)
and

S; = diag{s®,s% ..., s%m} (3.15)
with

8, = maz{6,, — k +1,0}. (3.16)

It should be noted that Sy = S. Attention is restricted here to perturbations of the
form

6A

[531 ] = (6P)S (3.17)
where

6Aio 6An -0 A1

6P = ! 3.18

P [6810 6By -+ 8Bip (3.18)
and

S=1[88 S (3.19)

The implication of this modelling is treated first. Practical justification then follows.

Substituting (3.17) into (3.3) and making use of
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gives

¢s = det[] + SM(6P)] (3.21)
where

M=A"[$ R,]. (3.22)
Now, because of Assumptions 7 and 8 and Lemma 1,

R, F,P < O(s~wtntntl)y < 0571y, (3.23)

Hence, S is proper for all admissible R,,. Also, since § = Sk,

So
S

lim $A7 = lim {| " | SP[(Aue + LSF T} =0, (3.24)
Sk-1

So SM in (3.21) is strictly proper for all admissible R,,. Moreover, the matrix M is
analytic in Re s>0 since

ATMS | R) = (X1 — KiB) | (Y1 + Ky A)]. (3.25)

Hence, SM(6P) is analytic in Re s>0 and strictly proper.

It immediately follows from the generalized Nyquist theorem (e.g., see Chapter
2 of [46]) that ¢5 is free of zeros in Re s>0 when there are no encirclements in the
complex s-plane of the point —1 4 j0 by the characteristic loci for S(jw)M (jw)(6P).
Now M is a function of R,, which in turn is a function of Z,,,. So one should seek an
allowed Z,,, satisfying (2.24) for which there are no encirclements of the —1+ j0 point
by the characteristic loci for the largest set of expected perturbations éP (i.e., so that
the stability margin is maximized). This design problem defies an analytical solution,
however. Hence, an alternative design approach is considered here. Specifically, that

allowed Z,,, satisfying (2.24) is sought for which

1 i
J / Tr(SMEM.S.)ds (3.26)

- E;T.j —joo
is minimized where with £ denoting the expectation operator
Y = E{(6P)(6P)'}. (3.27)
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Clearly, in this formulation the perturbation matrix is assumed to contain elements
which are zero-mean random variables with known covariances. When this is not the
case, one might take ¥ = I or one might replace ¥ with some appropriate weighting
matrix. The advantage of including ¥ in J is that when ¥ is known, the structure of
the perturbations is in some way included in the design process. J being finite for all
allowed Z,,, is a consequence of the fact that SM is analytic in Re s>0 and strictly
proper for all admissible R,,.

It is expected that this alternative approach may yield designs with stability mar-
gins that are significantly better than those for the optimal performance design which
corresponds to the choice Z,,, = 0. This expectation is based on the anticipation
that designs for which J is kept small are designs which in practice tend to keep
S(jw)M(jw)éP small so that encirclement of the —1 + 50 point are avoided.

The functional J is a special case of the functional

J I/MTMMM%MMMM (3.28)

:% —joo

where W and W, satisfy the following assumption.

Assumption 10: The km x m matrix W; is analytic in 0 <Re s< co and such that
W1 AT! is strictly proper. The (n+m)x(n+m) matrix W, is a proper para-Hermitian
matrix which is analytic and nonnegative definite on the s = jw axis.

In order that the theory developed here be applicable to situations in which the
modelling of the perturbations §A;, § B, is done differently and/or the weighting
matrix % in (3.26) is chosen differently, all results in the sequel are developed for the
more general case of (3.28). Specifically, a formula is derived which gives the strictly
proper Z,, analytic in Re s>0 and satisfying (2.24) for which (3.28) is minimized.

The practicality of the perturbation model assumed in (3.17) thru (3.19) is justified
next. In most applications, F;P is strictly proper. When A; is column reduced, it
then follows that

lim F,P = lim B, S;" A7} = 0. (3.29)

$—=00

Now (3.29) holds if, and only if,
lim B;S;' =0 (3.30)

Elamde el

or the column degrees of B; are less than the corresponding column degrees of A;.
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In this case, it is always possible to write

B, = EIF_IBHSZ' (331)

and
6B; = X516 By;S; (3.32)
which agrees with the second block row of (3.17).
The justification for taking §A;x = 0 is more involved. When 6 A # 0, then

| P4 Ak
0P = [5PB 0 ] (3.33)
where
6Pa | _ | 6Aw0 6An -+ A1k
[5733]— [5310 6By --- 5Bl,k_ll (3.34)
and
0Ay | | 6Pa bAwn S
o= "] 15 ] 63
Using (3.35) in (3.3) and invoking (3.20) now yields
s = det(] + M) (3.36)
where
US|, a 6Pa 6A;x
M—[Sk}Al[S Rw][épB ; } (3.37)

Since under Assumptions 7 and 8, R, and F;PR,, are strictly proper for all ad-
missible R,,,

lim [ $ R, |=[1 0]. (3.38)

§—00

It should now be clear when (3.24) is recalled that

. 1o 0Pa 6A1k
im M = [ A;,g] [1 0] [ 6P 0 } (3.39)
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or

0 0

M(o0) = ATN6PA ATMSAw |

(3.40)

So with §A;x # 0, M is not strictly proper and any H; norm associated with this
matrix is infinite.

Obviously, 6 A1, = 0 is needed for the theory developed here. On the other hand,
since 6 Ay impacts primarily on the high frequency behavior of M and since from
(3.40) the eigenvalues of M(o0) are all less than unity in magnitude when

14T 6 Awell < AT N8 Aw < 1, (3.41)

it is clear that the impact of non-null §A;; on encirclements of the —1 + j0 point
by the characteristic loci of M is small when the inequality in (3.41) is valid. So
the designs proposed here are more robust to parameter variations that affect the
low frequency behavior of the plant. But this is usually desired, since loop gains
are typically small in the higher frequency range. The problem formulation is now
complete.

4. The Analytical Solution

The constrained optimization problem associated with (2.24) and (3.28) is solved
by introducing a Lagrangian [16,17] multiplier o® and minimizing first

J=J+a*AE,,. (4.1)
This yields the minimizing Z,,, as a function of ?. The parameter o? is then chosen
so that (2.24) is satisfied. It is shown in the Appendix A that J and AFE,, are a

monotonically increasing and a monotonically decreasing function of o2, respectively.
Also, it should be clear that minimizing J is equivalent to minimizing

MJ = MJ + MAE,, (4.2)

when
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1 o?
)‘1_1+a2 , /\2—1+a2—1—)\1. (4.3)

So the set of all Z,,, that minimize J for 0 < a? < 0o is the same set that minimizes
A\ J with Ay > 0, A, > 0 and )\, + Xy = 1. Hence, as described in [31,32], the set of
solutions Z,, is the set of Pareto optimal solutions for the multiple objective criteria
J and AFE,,,. In fact, after some aditional observations described below, it is possible
to easily derive a formula for this set of Z,, by using equation (4.5) in [31] and setting
o’ = %f in the result. This is done in Appendix B.

Because of the properties of W, included in Assumption 10, one can always write
W2 e Hsz* (44)

where H; is proper and analytic in Re(s) > 0. It then follows from (3.28) that

1 pies
J =124 5 /_ " Tr(TyTh.)ds (4.5)

joo

where

Ty = WiM H,. (4.6)
It is also obvious from (2.24) that

AEy. = ||Ta|l; (4.7)
where

Ty = Zy,. (4.8)

Moreover, the matrix M in (4.6) can be expressed in terms of Z,, with the aid of
(2.20) and (3.22). From (2.20),

R, = Ry + A;]A™'Z,,0Q71 [ g‘

| (4.9)
Then, when (2.4) is recalled,

S=I-R,F,P=1~R,F,P— AAN'Z,,0" [ ]g

} . (4.10)
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Thus, (3.22) gives
M=A7"[§ Ry |="U+9:7,.7,

where

U, = ATY(I — R F.P) | R,),

\Ilz —_ A—l,
and

\I’3=Q_1|:—B Al

0 0
Hence (4.6) is equivalent to

I = R — U2,V

where
R, = Wi¥1H,,
Ul = _WI\II%
and
‘/1:\113H2.

Similarly, (4.8) is of the form
T2 = R2 - U2sz‘/2)
with

Ry=0, Up=—I, V=1

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.18)

(4.19)

(4.20)

Clearly, R,, Uy, and V, are proper, real, rational matrices which are analytic in
Re(s) > 0. It is also established in the sequel that the same is true of Ry, Ui, and
Vi. In addition, both R; and R, are strictly proper. As a consequence, minimizing

(4.2) or
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M = VB = VAU Zu VAl + 1 AaRe = Aol Zus Vil (4:21)

with respect to Z,,, is a special case of the problem already solved in Sections III and
IV of [31]. Here Z,, plays the role of the matrix @ in [31] and the fact that R; and
R, are strictly proper guarantees that Z,,, will also be.

That Ry, Ui, and V; have the properties described above is established with the
aid of the following lemmas and one additional assumption.

Lemma 3: W ¥, <O (s(“’2+1)).

Proof: From (4.13),
W10, = WiA™ = (Wi ATH (AATY). (4.22)

From Lemma 1, AjA™' < O(s™2). Since W;AT! is strictly proper by Assump-
tion 10, it immediately follows that the lemma is true.

Lemma 4: With vy = max{0, -1}, ¥3 <O (5(V4—V1)) )
Proof: From (2.4) and (4.14),

(4.23)

w3294[—AﬂP A]zﬂdg[—EP I}

0 0 0 0
Since

i) Q1A < O(s™) because of Lemma 1,

ii) F,P< O(s7) because of assumption 7,

it immediately follows that the lemma is true.
Lemma 5: U;, ¥, and U3 are analytic in Re(s) > 0.

Proof: Since M is analytic in Re s > 0 because of (3.25) and since it is clear from
(4.11) and (4.12) that Uy is the particular value of M corresponding to the choice
R, = R, it follows that Uy is analytic in Re s > 0. The matrix ¥5 in (4.14) is analytic
in Re s > 0 because Assumption 6 guarantees that 271 is good and, therefore, analytic
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in Re s > 0. Finally, attention is turned to ¥ = A~'. From Assumption 5, A.A
is nonsingular on the finite s = jw axis. The product A.A is also good because
AL(P.P + kQ)A; = (PA1)«(PA1) + kA1.QA; good follows from @ good and PA,
good. That @ is good is a consequence of Assumption 4. The proof that P A, is good
is given in Section II of [41]. So A.A is good and nonsingular on the finite s = jw
axis. It immediately follows that the same is true for A and ¥, = A™!. Since A™! is
already analytic in Re s > 0, it follows that A~! is analytic in Re s > 0.

The final assumption needed is

Assumption 11: v, = v; = v, = 0.

Remark: Assumption 11 is consistent with Assumptions 7 and 8 and the specifi-
cations in practical cases. Typically, F;P is proper which is equivalent to v, = 0.
Also, P is strictly proper and k@ is proper and positive definite at infinity. Hence,
(P.P + kQ)™* is proper which is equivalent to v, = 0. Moreover, the matrix ® in
(2.16) is typically proper and positive definite at infinity so that ®~' is proper. Thisis
equivalent to v; = 0. Finally, it should be noted that the results derived in the sequel
are derived with a somewhat less restrictive Assumption 11 in [47] using standard
Wiener-Hopf arguments. Since Assumption 11 is satisfied in most practical applica-
tions, however, the simpler derivation based on the already existing results in [31] is
given here.

All is now in place to readily confirm the properties of Ry, U; and V] cited above.
By construction Hj is proper and analytic in Re s > 0. Hence, R; in (4.16) is analytic
in Re s > 0 and strictly proper when the same is true of W;¥;. Now W; is analytic
in Re s > 0 by assumption 10 and ¥; is analytic in Re s > 0 by Lemma 5. Hence,
R, is analytic in Re s > 0. Also,

W1, = W1 ATH(I — Ry F.P)|R.). (4.24)

Now W;AT! is strictly proper by Assumption 10. Because of Assumptions 7 and
11 and Lemma 1, it is also true that R, and R,F;P are strictly proper. Hence, it
immediately follows from (4.24) that WU, and, therefore, R; is strictly proper.

It is obvious that U; in (4.17) is proper because of Assumption 11 and Lemma 3.
It is also clear that U; is analytic in Re s > 0 since W; is by Assumption 10 and ¥,
is by Lemma 5. Finally, V; is proper and analytic in Re s > 0 when ¥3 is because
of the properties of Hy. Clearly, U3 is analytic in Re s > 0 by Lemma 5. Also, ¥3 is
proper since with Assumption 11 one has v4 = v; = 0 in Lemma 4.

It is now a straightforward process to prove the following theorem which represents
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the key result of this section.

Theorem: When o # 0 and Assumptions 1 thru 11 are satisfied, the functional

j= % / [T W MWo MWL) + 02T Zuys Zupes) ds (4.25)
oo

with

M =Ty 4 9,7,,%; = A7 (I - Ry FiP) | Ru]+ A7 2,07 [ 'OB ’3 ] (4.26)

is minimized over the set of all strictly proper Z,, analytic in Re s>0 if, and only if,
Z., 18 chosen so that

vecZy, = 20 =V H{vi v}y (4.27)

where v/ is a Wiener-Hopf spectral solution to the equation

D = (U3W,¥s,) @ (VoW W1 T,) + o = .77, (4.28)
and where
v = vecV = —vec(V2. W1 W1 U W, 03,). (4.29)

Proof: See Appendix B.
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5. The 2DOF System

It should be clear from Fig.1 that when there is no feedforward transducer (i.e.,
L;=0) one should expect that the results obtained for the 3DOF system reduced to
a 2DOF system design. That is, one should expect that C,=0 is obtained. It is
demonstrated in this section that this is indeed the case. In the process, the formulas
for the 2DOF system design are derived.

It follows from (2.32 that C,=0 is equivalent to R, = 0. It has already been
pointed out in [1] that R, = 0 when L; = 0. Hence, in light of (2.20), it only remains

to show that
OR, = /hA_l[L’Zw[ZZ]Q'1 [ (} } = 0. (5.1)

The first step entails the derivation of a useful formula for . With L,;=0, one
easily finds from (2.15), (2.16), and (2.19) that

0Q, = [ A(FtGdsth +Gm)As ng ] , (5.2)
Hence,

Q= [ e é’z ] (5.3)
where 0, and 0, are Wiener-Hopf spectral solutions to

D1 = A(FGas Fou + ) A. (5.4)
and

0209, = G). (5.5)
Substituting (5.3) into (5.1) then yields

§R, = A4A 2,057 (5.6)

The next step entails the derivation of useful formulas for Z,, and Z, starting with
(4.27). From (4.14) and (5.3),
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Uy=[ ¥, 0]
where
b=07'[-B 4],
It is now convenient to introduce
A = Vo W11 ¥,
and
B = U3W,Us,.
Then (5.7) yields
.
where
B = ¥,W, s,
and it follows from (4.28) that

D (B QA+e) 0
N 0 o]

and

v o
v_[O aI]

where ﬁ is a Wiener-Hopf spectral solution to

. =B @ A+ = (U Wo0s,) ® U0, Wi, W10, + 0?1

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

The final piece of information needed for (4.27) is v which follows from (4.29).

Clearly, (5.7) leads to




V= —U W W 6 Wolls, = [ V0] (5.14)
where
V - —‘pz*Wl*WlWle\ilg*. (515)

Using careful bookkeeping and recalling that F;P = A™'B = B, A7' is an nxm
matrix, one can show that Z,, and V are mxn matrices and ¥/ is an nmXxnm matrix.
Hence,

v =vecV = [ o 0 ] (5.16)

where the vector

!

ﬁz[v; vy v v;] = vecV (5.17)

has nm rows. Substituting (5.12) and (5.16) into (4.27) then gives

ved Zu| 2] = l @_l{g* o)+ } (5.18)

from which it follows that

" =1

vecZy, =v {v, v}+ (5.19)

and
vecZ, = 0. (5.20)

Hence, (5.6) gives 6 R,=0 and (5.1) is confirmed.

The Z, given by (5.19) is denoted by Z,0. The associated expression for R, is
obtained from (2.20), with Z,=0 and § given by (5.3). One gets

Ry, = Ryo= Ry + AN Z,00 1A (5.21)
where

vecZuo = {7, D)y (5.22)
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Using (5.21) in (2.13) then gives the C,, in the 2DOF controller
r(8) = Cu(s)uo(s) — Cy(s)w(s) (5.23)

that results.

Since the functional (4.25) reduces to

.1
J= / [Tr (WA MWoMJWh) + 2T (2 Zs)|ds (5.24)
oo
with
M=V, +0,7,¥, (5.25)

when Z,=0, it follows that (5.24) is minimized when R,=R,0 and Z,,=Z,0. This is
indeed the result one would seek in the robust design of a 2DOF controller.

It should be noted that the above results are independent of G; so long as As-
sumption 6 and ®~! < O(s™?) in Assumption 7 are satisfied. Now (5.2) is the
expression for ADA,. Clearly, all that is needed for the satisfaction of Assumption 6
is that A®A,, where

& = F,Gy;Fru + G, (5.26)

be analytic and nonsingular on the finite part of the s = jw axis. For then one can
always pick a G so that the same is true for A®A,. With regard to

Q_lz[ci)-l 0

—21n
0 G < O(s™™) (5.27)

all that is needed is &1 < O(s~?1) for one can always pick a G satisfying G}
O(s™1).

As a consequence of the above results and observations it is now possible to state
without any further proof the following corollary to the main theorem.

Corollary: When a # 0 and Assumptions 1 thru 11 are satisfied with AdA, replacing
A® A, in Assumption 6 and with ) replacing ® in Assumption 7, the functional

1

Jj= / T (Wi MWy MWL) + 02 Tr(Zy Zon ) ds (5.28)
joo
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with
M =0, +9,7,¥; (5.29)

is minimized over the set of all strictly proper Z,, analytic in Re s> 0 if, and only if,
Z., 1s chosen so that

A =1

vecZy = V. b}y (5.30)

where @ is a Wiener-Hopf spectral solution to the equation

Vv = (B ¥5.) ® (W0 Wi W 05) + 021 (5.31)
and where
b = vecV = —-vec(\ll2*W1*W1\Il1W2\i!3*). (5.32)

6. Computational Issues

Once R, and R, have been determined, the final step in the design process can
be taken. Specifically, the controller transfer matrices C,, and C, can be computed.
From (2.2) and (2.3), one gets

Cw = (I = R,FiP)™'R, (6.1)
and
C, = (I — R FiP)'R,. (6.2)

These formulas, however, involve a number of cancellations that must be assured
despite roundoff error in the numerical computation. Failure to enforce these theo-
retically required cancellations can lead to a synthesized controller with poles (zeros)
where the plant has zeros (poles) in Re s>0. In such cases, the system is unstable
because of unstable hidden modes.

The best way to proceed is to recognize from (2.20) that R, and R, are of the
form
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Rw - Ale (63)
and
Rz e Ale (64:)

where H,, and H, are analytic in Re s> 0 since the formulas for R, and R, given in [1]

are also of this form. So one would compute H,, and H, separately and then recognize
that the substitution of (6.3) and (6.4) into (6.1) and (6.2) yields, respectively,

C,=D;'H, (6.5)
and

C.=D;'H, (6.6)
where in view of (2.4)

D, = A7Y(I - R,F,P)= (I — H,B,)A7". (6.7)

It is important to recognize that additional cancellations occur in the computation
of D,. Since R, is acceptable, it follows from (2.7) and (6.3) that

H, =Y + K, A. (6.8)

Using (2.5¢) and (6.8) in (6.7), one gets

D, = [I-(Y;+ K A)B)AT
= [I-YiB, — K;ABAT?
- [X1A1 - I(lBAl]Al_l - X1 - IXrlB (69)

Since X; and B are polynomial matrices and K; is analytic in Re s > 0, it follows
that D,, is analytic in Re s > 0. Thus, when using the final result in (6.7) to calculate
D, one must take care to assure that no poles of A7! in Re s > 0 are poles of any
element of D,. This is accomplished for each element of D, by dividing the factor
containing the poles of AT' in Re s > 0 into the numerator polynomial and ignoring
any remainder polynomial as being due to roundoff error.
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7. A Numerical Example

A 2DOF design is carried out in this section to illustrate the advocated design
methodology for trade-off between performance and stability margin. The following
single-input-single-output plant is considered for a pure servo problem

s—1
P(s) = G2 (7.1)

The spectral densities of the signals are G, = ——;17 and Gg =G, =G, =0, i.e, no
disturbance, input noise, or measurement noise. The first-order plant perturbations
are accounted for by the plant uncertainty spectral density

Gu(s) = Tyl (7.2)

and the constants are taken as k = Q) = F; = Top = p = 0 = 1. Therefore, Gy4; = G;.
The optimal 2DOF design has been carried out in [2] and R, is given by

i _ s(s =2)[(8+3vT)s — 1]
v (s +1)(s24++Ts+1)

(7.3)

This R, is realized with

~ _ (843VT)s—1
Cyp = T Gra (7.4)

For this design,

E, = 68.395 (7.5)

which is the minimum value of the cost functional

B, = /m Tr(RyGsRuy) ds+ /”" Tr{(I- PR,)G,(I— PR,).] ds.(7.6)

T ) oo 21y J-joo

Equation (7.6) follows from (2.12) with the given data for this example. It should be
noted that this FE, reflects only first-order plant uncertainty so that the choice of a
non-zero Z,, for improved stability margin corresponds to an increased sensitivity to
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“small” plant uncertainty as measured by the cost increment AF,,. Moreover, with
Z, =0 no change in tracking and plant saturation cost occurs.

The case considered is one in which the normal operating profile involves only
small perturbations in the numerator polynomial coefficients as modelled by (7.2).
However, an infrequent abnormal operating profile, which results in a significant
change in the plant poles at s=0 and s=2 and the plant zero at s=1, is expected. In
order to provide more stability margin for the abnormal case, a trade-off of optimal
performance under normal operating conditions for greater stability margin in the
abnormal case is considered here through a nonzero choice of Z,. It is assumed
that the plant zero and poles change in a fashion such that only 6A;o and 6By are
nonzero. Then, with 6P equal to the first block column of (3.18), it follows that
(3.19) reduces to S = Sp = 1 in (3.17). Moreover, with 6 A;o and §Byo independent
zero-mean random variables each with unity variance, the matrix ¥ in (3.27) is an
identity matrix. So in (4.25), Wiy = S =1 and W, = ¥ = I. It now follows in a
straightforward fashion from (5.31) since

A A st —5s2+1
and
U, Uy = _ (7.8)
BT B2 41’ .
that
A~ aos+ 1+ ato?
a(s+1)
Furthermore,
. (84 3VT)s — (54 2V7) :
= = —vec(Vq Uy Vs, ). 7.10
v o(s2 — 1)(s2 — /Ts + 1) vec(Wa. ¥ Us.) (7.10)
It then follows from (5.30) that
Zo = o (7.11)

acs + V1 + a?o?

where
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‘= 13 +5v/7
24 VT)(ao + V1 + ao?)

The trade-off in performance and stability margin obtained through different
choices of « is summarized in the following table where the values listed for the
square root of

(7.12)

1 i
2~ Tr(MM,) ds = .
M3 =5 I Tr(MM.)ds =] (7.13)
and for
1Moo = sup 7(M(jw)), (7.14)

where &(.) denotes the maximum singular value of (.), are the ones obtained with the
listed C,, that was obtained using the design methodology described in this paper.
The last two columns are explained later. Clearly, by giving up performance, a
reasonable gain in the stability margin may be achieved. The first row in the table
corresponds to the optimal design (7.4). As expected , the smaller « is, the better
is the stability margin and the greater is the degradation in performance. The a
corresponding to a 100% increase in cost, namely o*, is 0.165393. In this case, 5.24
db improvement in stability margin is achieved as measured by ||M||o.

As noted earlier, a quadratic measure was chosen as an approximate measure of
stability margin in this paper. To show the efficacy of this design methodology, a
numerical optimization was carried out to evaluate the best H,, design for each row
in Table 1. This optimization was carried out over the set of first order Z,,, namely
Z!, that give the listed value of AF,, since the optimal solution for Z,, in the H,
setting was also first order. Specifically, the optimization was carried out over Z,, of
the form:

a;

Zy = , > 0, 7.15
s+ ay 2 ( )

and a; = £1/2a,AE,, in order to assure that || Z,||3 = AE,.

The last column in Table 1 lists the stability margin for the best H,, solution over
the set of allowable first order Z,, when a; is negative. The column before the last is
the same as the last column except that the parameter a; is now positive. Obviously,
the attained stability margins for the H, solutions are reasonably close to the Hy
solutions. In all cases shown for a positive aq, the H, solutions yielded an improvement
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o| By | AE, [IMlle| M| Co=ggh | infz [Mleo | infz [IM]lo
(% of E,) | (db) | (db) (db) a3 >0 | (db) —a; <0

o | 68.395 0 20.29 | 14.187 | z=0.063, p=10.292 20.29 20.29
(0%) g=15.937

1.0 | 70.328 1.934 18.786 | 13.337 | z=0.077, p=12.216 17.74 16.66
(2.83%) g=18.276

0.9 1 71.006 2.611 18.570 | 13.213 | z=0.080, p=12.590 17.44 16.66
(3.82%) g=18.731

0.8 | 71.989 3.594 18.311 | 13.064 | z=0.083, p=13.083 17.07 16.66
(5.25%) g=19.329

0.7 | 73.451 5.056 18.003 | 12.885 | z=0.087, p=13.747 16.63 16.66
(7.39%) g=20.137

0.6 | 75.697 7.302 17.636 | 12.670 | z=0.091, p=14.675 16.12 16.66
(10.67%) g=21.265

0.5 | 79.285 10.890 17.194 | 12.410 | z=0.098, p=16.034 15.49 16.66
(15.92%) g=22.916

0.4 | 85.352 16.957 16.671 | 12.098 | z=0.106, p=18.155 14.74 16.66
(24.79%) £=25.493

0.3 | 96.563 28.168 16.052 | 11.723 | z=0.116, p=21.813 13.83 16.66
(41.18%) £=29.939

0.2 | 120.910 | 52.515 15.327 | 11.277 | z=0.131, p=29.335 12.72 16.66
(76.78%) £=39.080

o* | 136.790 | 68.395 15.050 | 11.103 | z=0.137, p=34.117 12.28 16.66
(100%) g=44.891

0.1 198.237 | 129.879 | 14.490 | 10.747 | 2=0.150, p=>52.335 11.36 16.66
(189.9%) g=67.031

Table 7.1: Suboptimal designs for improved stability margin for various as.

in stability margin which was at least 59% of that obtained with the associated H,
solution. Moreover, when a better solution than the H; solution is desired, then the
H; solution provides a good initial point for an iterative search for the H,, solution.
A larger gain in stability margin may be achieved when a > 0.8 if negative values
of a, are permitted. However, in this case, the controller needed is second order and
the larger stability margin is realized at the expense of an unreasonably fast pole in
the controller. Therefore, the resulting controller is not a practical one. Actually,
this is another reason why an approximate measure of stability margin may be more
suitable since a controller with a very high bandwidth may be needed if one insists
on achieving the maximum possible stability margin. In one example, by giving up a
small amount of stability margin, one could reduce the controller bandwidth required
to a more practical value.
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Additional insight regarding the solutions obtained can be gained from an exam-
ination of the stability region in the 6 Ay, 6 B1p parameter space. The closed-loop
characteristic polynomial for this example with first order controllers of the form

s—z

Culs) = 97— ; (7.16)
is given by

Al(s) = (s* ~ 25 4 § A1) (s — p) + g(s — 2)(s — 1 + 8 Byp). (7.17)

Appealing to the Routh test for the above polynomial gives as the necessary and
sufficient conditions for asymptotic stability:

g—p—2 > 0 (7.18a)
(9-2)6A+g(g—p+2—2)8Bw + (9—p—2)2p—g(l+2)]—gz>0(7.18b)
—6A10—gz 6B +gz > 0. (7.18¢)

The inequality (7.18a) is satisfied automatically since all the controllers stabilize
the nominal plant. The last two inequalities establish the range of allowable per-
turbations in the plant parameters and are linear in the unknown parameters 6 A1
and 6Bjg. The set of parameters for which the closed-loop system is asymptotically
stable is shown in Figure 7.1 (the hatched area). This set corresponds to the optimal
controller (i.e., @ = 00). When perturbations along any ray drawn from the origin are
equally likely, the shortest distance from the origin to the boundary of the stability
region defines the stability margin. This distance is the radius of the circle shown in
Figure 7.1. This radius is in agreement with the value of ||M||7} obtained from Table
1 for the a = oo case and is the minimum distance from the origin to the line /,.
The constraint (7.18c¢) is indeed the limiting factor in this example. As parameter «
decreases, the line [, rotates counter-clockwise about the point (0,1); therefore, the
stability margin increases. The parameter set for a* = 0.165393 is given in Figure
7.2. In this case, the stability margin is larger by a factor of about 2. The circle with
the smallest radius corresponds to the optimal design. The second circle corresponds
to the suboptimal design and the largest circle corresponds to the best H,, design
constrained to the set of first order Z,,. It should be pointed out that it is inherently
difficult to achieve a good stability margin for this plant [2] since it is unstable and
non-minimum phase and the relative distance between the right-half-plane zero and
pole is small. Never-the-less, a substantial relative improvement is possible when a
trade-off of performance can be considered.
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Figure 7.1: Allowable parameter space for the optimal H, design.

Figure 7.2: Allowable parameter space for the suboptimal H, design.

8. Conclusion

A promising control design methodology for trade-off between performance and
stability margin for multivariable systems has been introduced and applied to a scalar
example. To attain an analytical solution to this fundamental trade-off problem, a
quadratic measure for stability margin is chosen. Furthermore, a novel approach is
introduced which allows structured perturbations in the coprime polynomial matrix
fraction description of the plant transfer matrix to be taken into account. The ad-
vocated methodology provides a good initial solution from which better solutions, if
needed, may be searched for iteratively. Future work will include applications of this
design methodology to practical multivariable examples to assess the efficacy of the
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methodology presented here. Needed in this effort are efficient numerical algorithms.
In this regard, it is expected that [48-51] will play an important role.

Appendix A
The cost functional (4.1) is of the form

J=J+dK (8.1)
with
K(Zys) = AB,,. (8.2)

The optimum Z,,, is the one which minimizes J and it depends parametrically on .
In this regard, one has the following lemma.

Lemma A1l: J is a monotonically increasing function of o and K is a monotonically
decreasing function of o?.

Proof: Suppose with o? = o, Z,, = Z,., is the unique optimum choice and for this
choice J = J; and K = K;. Similarly, with o® = o2, Z,, = Z,,, minimizes J and
J = Jy and K = K, in this case. Then,

Ji + a22K1 > Jo+ 0221{2 (83)
and

Jo + alng > Ji+ alzKl. (84)

Multiplying (8.3) with o? and (8.4) with as? and adding the two expressions yields
g 1

0112(.]1 — JQ) > 022(J1 — Jz) (85)
Therefore,
(Jl — Jz)(CXlZ — C¥22) > 0. (86)

This implies that
(Jl - Jz) <0& C¥12 - 022 <0 (OT (Jl — Jg) >0& 0112 — C!22 > 0) (87)
Therefore,
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Ji < Jy & a0y < a)? (or Jy > Jo & an® > a?). (8.8)
The above establishes that J is a monotonically increasing function of o. From (8.3),

T — Ty > a(Ka — K. (8.9)
Furthermore, from (8.7) and (8.9),

<t e 0> J; - Jy > a(Ky — Ky). (8.10)
So,

ai<a? & JSi<J and K, > K. (8.11)

This completes the proof.

Appendix B

The proof of the theorem stated in Section IV is given in this appendix. The first
step is to recall that minimizing (4.25) with respect to Z,. is equivalent to doing
the same to (4.21). This optimization problem is a special case of the one solved in
[31]. Since R; and R, are strictly proper here and since it is clear from (4.20) with
A2 # 0 that both \/A;U; and V; have full column rank everywhere in the complex
plane (infinity included), it follows from Theorem 3.4 in [31] that one can always
write the optimal choice for Z,,., which plays the role of @ in [31], as

22, = Zopoy + Loz (8.12)

where the constant matrix Z,,, =0 and ||sz||2 exists.

Now all that remains is the implementation of the steps given in Section IV of
[31] to derive the formula for

78 = Znps. (8.13)
First set

_ VeC(\/XIRl) VCC(\/Xl—qulez)

"= { vec(v A2 Rz) } - [ 0 (8:14)
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and

W = ® (VALU) ] _ l —HSII'Q@)\/EWl\I!z

et = [T 515
Next recognize that W, = W in [31] and form
WW = W.W = \,D (8.16)
where D is given by (4.28) with
=240 (8.17)

The matrix W, W has a Wiener spectral factor W,. Hence, so does D and the
symbol V is used to represent it. Clearly, one can take

W, = /M V. (8.18)
Associated with this factorization is the inner matrix
1
W; = I/VWO_1 = —WVL 8.19
n (8.19)

Using the fact that
Py, (Wir) = {Waur}s (8.20)

n (4.5) of [31} then gives

vec(Z?)) 2= W H{Wir}y (8.21)
or
Zo = LV'1 {—1~—V‘1W r} (8.22)
VA VYR '

From (8.14) and (8.15), one gets
War = —(Hy Wy @ /M W1 0,). vec(\/ M\ Wiy Hy). (8.23)
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The identities (see [52])

(G1® Ga)x = G1. ® Goa (8.24)
and

vec(G1G,Gs) = (G5 ® G1)vec(Gy) (8.25)
then lead to

War = —vec ((\/;\Ilz*Wl*)(\/ZWIlIIIHQ(Hg*\Ilg*)) (8.26)
or

Wer = Ao | (8.27)

where v is given by (4.29). Substituting (8.27) into (8.22) gives (4.27) and completes
the proof.
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